Journal Du Wap

Cycling News & Race Results

How Brakes Are Made | Inside The Tektro-TRP Factory

How Brakes Are Made | Inside The Tektro-TRP Factory


– Did you know that 13 million brakes are made each year by Tektro TRP? Did you know that that takes
3,200 tonnes of aluminium? Did you know that Tektro
have 160 CNC machines, and that no one needs to operate them? See that last bit wasn’t true,
everyone was just at lunch. Did you know that Tektro TRP
have won multiple World Cup, World Championship, and Olympic medals under the likes of Niels
Albert and Aaron Gwin here. But, did you also know that
they’ve won countless titles having made brakes for
other people as well? Did you know that 1,200 people work here? No? I think we need to find
out a little bit more. (industrial music) As part of our mini tour of Taiwan to look inside the bike
industry, we’ve stopped by to see the folks at Tektro TRP. See how they do things. From making five million
hydraulic disc brakes per year, right through to the advanced R&D facility that helps them create products
for riders like Aaron Gwin. Come on, you know who Aaron
Gwin is, mountain bike legend. The guy that won a Downhill World Cup, even though he snapped his chain
on the second pedal stroke. Yeah, that guy. Now, in total, they have three
manufacturing facilities. Two in China that handle
the more entry level market, and then this one here in Taiwan which acts as their global headquarters and where all the advanced manufacturing, high end brakes are made. Now if you are confused as
to why some parts say Tektro, and some say TRP, and yet,
I’m talking about Tektro/TRP in the same breath, is because although they are two distinct brands,
they are inextricably linked. So think kind of Toyota and Lexus. Tektro was launched back in 1986, and then TRP came in 2006,
aimed as the high end brand. Right then, let’s go and
see how brakes are made. ♪ Boo da buh boo da buh boo da bah boo ♪ (upbeat industrial music) Before we start making anything, we of course need a design, so we’ve come to the upper
floors to see that happen. Magic key card (beeps). Okay, so there’s about 25 people work in this particular part. There’s actually another
30 people down the road in an advanced R&D
facility who are looking further into the future. But when you look around here, you actually get a real
feel of what goes on. There’s prototype brakes
everywhere you look, and some things I hadn’t
expected to see as well. Like this. So random time trial
and aerodynamic frames knockin’ around, and that’s
for a very good reason. In that all the kind of integrated
brakes that you see now, 90% of them are likely to
have been made right here at the Tektro TRP facility. So let’s have a look at a process. We’ve got people like Garan here, who is working very studiously
on a prototype e-bike brake. Now he’s just working on CAD there. One of the beautiful
things about everything being done in-house, is that everything is literally done right here. So, he could press print, hypothetically, and just down here,
the brake gets printed. Tada, the 3D printing room. So, within just a few hours, it can go from that CAD drawing to this, which is a working prototype. Have a look at that. Printed in clear resin. You’ll see on this e-bike
brake, it’s quad-piston, so actually a lot of
technology from mountain bikes, learnt through sponsoring Aaron Gwin, will end up on a product like this, even though it’s going
nowhere near a downhill track, nowhere near a race. All of that technology does have a purpose for the general consumer. Now, that of course cannot really be used, so we next needs to
get something like this made out of aluminium. And to see that happen, we
need some heavy machinery. Oh yeah. Quick change of location, and a definite change of gear. This is where the raw materials
hit the factory (groaning). You can see though, it’s not
just giant lumps of aluminium; this one has been extruded
by another company to Tektro’s specifications. You should probably recognise that. Yeah? No? Basically this then gets chopped into more manageable pieces like this. I’m quite glad as well,
because that’s really heavy. Now a little bit of extruded aluminium doesn’t stay like this for long. Its journey continues in here,
where it gets hot forged, which is a particularly painful but fortunately quite short-lived process. So you’ll see all of the tooling here for various different
components that Tektro make. Basically, extrusions
like this will fit in and then get heated up to between 180 and 200 degrees Celsius, and then stamped with 400 tonnes. Let’s go an have a look. (raucous techno rock) Now you see if you look
down a production line that most of these forges
are operated manually. This one here is the first step in automating the whole process. So this robot takes a hot aluminium, pops it on that tool in there,
where it then gets forged, and then put back. It’s pretty hardcore work, to be fair! (machine stamping) Stamping, so this is what
comes out of the hot forge, but this is what we need, so very simply, this gets placed in, punched out, and we’re left with something
very much resembling a brake calliper. Through this doorway, and you’ll notice a
distinct change of pace, and that’s because we’re going
away from our heavy machinery and more towards our precision machining. And there’s a really high
level of automation here, a lot of very sophisticated robots. I’ve been told that this robot
really likes watching GCN. How do you do? Now the reason why robots
are so important here is because of the
incredibly high tolerances to which they operate at. And that is particularly critical when you talk about hydraulic brakes. So to put it in context,
we’ll go over to this machine which is doing quality
control on the pistons. So, this little laser beam there measures the exact
dimensions of each piston. And if we detect that one of them is just 0.04 millimetres
out, in any orientation, then a little jet of air
will blast it into oblivion, where it then gets recycled, and then all the good ones come down here. (metal clinking) (parts rattle loudly) Tumbling, putting a finish on your brakes. Little ceramic do-das. We’re moving from
manufacture now to assembly. On this floor alone there are 100 steps to actually make a hydraulic brake. Which seems quite
remarkable, isn’t it really? And what was news to me
was that almost everything that goes into a TRP hydraulic brake is actually made right here. In fact it’s easier to tell
you what they don’t make than what they do make. So, somebody else makes their rotors; they contract that out. The bolts are made somewhere else, and also the hoses, which incidentally, I love this little machine, they’re currently being cut to length. Now you might think that’s a bit weird; why would you need a machine to do that? But, if a bike brand comes
to Tektro TRP and says, “We want to buy 1,000 brakes, “and we’ve got them on this
bike in five different sizes,” they give the length to Tektro TRP and their machine will cut
it to five different lengths. So, saving loads of time. How cool is that? (relaxed funky techno) So we’ve assembled our
brake; it’s been bled. This next step is almost unbelievable. Every single hydraulic brake
that comes out of Tektro TRP goes through the same
quality control process. Literally every brake will
go onto a machine like this where it’s squeezed 250 times, and then squeezed for 400
seconds, before being taken off, left to rest like a
fine wine for 72 hours, before being brought
back and going through exactly the same thing. And what they are looking for is that just in case all
the previous quality control hasn’t quite picked up one last bit, which would mean that potentially
a drop of oil leaks out, this will make sure that those
brakes do not hit the market. You ready? (machine tapping) 225, 224, 223, 222, 221 … (muffled machinery echoing) (greets in foreign language) This is a paint shop. Some brakes come in to be
analysed; others are painted. Clearly this is where
the painting happens. (sprightly techno music) So one analysed brake calliper
ready now for laser etching. Okay; I can’t get enough of laser etching. Whoa! That is awesome. Check it out, a GCN brake calliper! (techno music) There we go then, your finished article. I feel emotionally quite invested in this now we’ve seen it from an
extruded piece of aluminium to the finished product, but there you go, that’s what you’re going to
find on your bike shop shelf. Now despite the fact that
we are leaving Tektro TRP with a finished article, there is still one very important place we’ve got to go on our
journey inside this brand and that is the advanced R&D facility which is about 30 minutes down the road. That’s where they not only
design products like this but they are looking well into the future. So I wonder whether we’re going to get a sneaky peek of what’s to come. Now you know you’re in
an advanced R&D facility when you get asked to take
your shoes off at the door. I wish I’d know that this morning when I went to put my socks on, but nevermind, you live and learn. Here is a very, very swish
office; I think you’ll agree. It’s separate from the rest of the factory because in order to recruit
the very best engineers they needed to be located
in downtown Taichung, where people don’t have
to commute half an hour to get to work. Now in here we’ve got
all the top engineers, and they are working three
years down the line, I’m told. And everyone has been very
suspicious and secretive, because as we walked in here
there was a flurry of activity whilst everyone tidied up. I have no idea what they were tidying up, but I suspect it’s good. Flip-flops off, there we go. From our 22nd floor balcony,
we can conclusively say then, that is how you make a
brake, from a beginning, technically which is at the end, all the way through to
the finished product. And we’ve got to say a massive
thank you to Tektro TRP for inviting us out here and
giving us such amazing insight. Do make sure you subscribe to GCN if you want to see more of
this kind of factory tour; we’ve always got loads on the channel. To do so just click on the
globe; it’s completely free. And if you want to watch
a couple more videos, firstly you could check
out those Aaron Gwin brakes on a GNBN Bike Check, that
one is just down there, or for something for roadies, how about “How to Brake Like a Pro”;
that one’s just down there.

100 thoughts on “How Brakes Are Made | Inside The Tektro-TRP Factory

  1. I Messer up my hydraulic Disk Brake. When i Trigger it Nothing happens the pistons Arent even Working. There is enough oil in the Breaks but i still dont know

  2. 11:00 Holy Crap! How much stuff does your cameraman have in his pockets? Looks like he has a serious case of saddlebags

  3. @ 3:15, he was actually test loading the system. I dont really know if his using solidworks or inventor or other simulators though.

  4. If you've ridden for any length of time, chances are you've ridden a bike with brakes made by Tektro…even if they weren't branded Tektro.

  5. I love seeing how things are made but it makes me sad when you see people assembling and working on products they themselves could never afford. – somethings wrong with the world.

  6. …did you know Tektro makes the most dangerous low cost Hydro Brakes in the market? Then, they make one of the best mech brakes in the world; TRP Spyke…..like wtf?

  7. Hi guys,
    Would you be able to do a video on which is faster over a commute down canal paths or bumpy sections…road bike, cyclocross/gravel, single speed and mountain bike. I can’t figure out which n+1 to look at next. Cheers

  8. Well, if they made Specialized's integrated brakes, they've made crap. I feel bad for the owners of those proprietary brakes, and am so glad I don't own a bike with them.

  9. In the UK you would not be able to walk around a factory without ear and eye protection and maybe a day glow jacket. Also you stood right next to a robot when it was operating, that's a big safety no no! I used to work in robotics and that is not something we would allow in Europe.

  10. Help!!
    I have a felt cx bike and it currently has 33mm tires on it. But because it’s getting cold and snowy. I was wondering if I should get some 40mm tires. And if so, would I need new rims as well?
    Thx for the help

  11. I can help but feel the lady running the laser etching machine was not as thrilled as Si about watching it burning in the GCN logo.

  12. Nice video, but I'm unclear on whether these brakes have ever been used by someone famous. Like maybe a rider who's won an MTB championship. Maybe even someone who's managed to win a race after breaking his chain on the second pedal stroke out of the starting gate.

  13. That place is a dream. Imagine the stuff you could make. To be fair I had a set of tektros and I was doubtful of quality and proformane. They never let me down once and out lived the bike with no services or anything. They just worked. Now I know why. 👍

  14. Now that was an interesting show. It's obvious that if that Yank chap who snapped his chain on the 2nd pedal stroke, still went on to win the race, doesn't make much use of his sponsors product. That's quite a slap in the face for them.

  15. These factory tours and inside looks with your sponsors and other manufacturers are absolute gems.

    I must say the editing and filming of this video is extremely polished with lots of good nuances – so chapeau to the man holding the mammoth of camera and also to the team on buttons editing the footage for the youtubers.

    Thanks and a thumbs up.

  16. In your discussion of the two brands and their connection, what if you pointed out that TRP stands for "Tektro Racing Products"????

  17. I hope you guys got a dozen of those laser engraved GCN brake calipers to give away as prizes!! 🙂 Awesome tour of a typical factory in Taiwan & a look at all the hard work guys & girls put in on the factory floor to make one small part on our bikes!! Big thumbs up!!

  18. All of my bikes have Shimano brakes. GCN can easily do a documentary on how Shimano came to dominate the bicycle component industry!

  19. When I upgraded my MTB drivetrain to 1x XT, I kept the Tektro Auriga brakes as they were perfectly adequate for the riding I do.

  20. The best scene, Si standing next to a laser with three warning signs and an operator behind a protective screen, says “I can’t get enough of laser etching”. Actually Si you got way too much laser etching. Do you still see the light when you blink Si?

  21. Fantastic vid, really like the factory tours. I have worked as tool designer for the last 30 years in aerospace (Boeing) so i can appreciate the tooling work that needs to be done to produce this product. Looks like Tektro has a-lot of tooling automation. You showed us the product design offices, did you see the tool design offices? Keep these factory tour coming, Thanks!!!!!!

  22. Tektro is shit no matter how many cnc machines they have! You guys should stop selling your soul to stupid companies. Have a taste and opinion of yourselves not just shift by whoever pays you!

  23. I pulled a brand new Trek (budget spec'd) hard tail out of the box and the two caliper halves on a Tektro Auriga were not bolted together properly. Quality control indeed, cost me some new pads, a quick bleed, and plenty of annoying labour.

  24. Did you know, that Tektro rim brakes are actually pretty poor and vague? Did you know that I swapped out the standard Tektro brakes with Shimano ones before my bike was even ordered?

  25. TRP HY/RD(hybrid, mechanically actuated hydraulic disk break.) calipers on my bike, on a Fuji Gran Fondo Carbon Fiber frame bike(the Gran Fondo 2.3 2018 model).
    http://www.fujibikes.com/usa/bikes/road/endurance/gran-fondo/gran-fondo-2-3

  26. I thought Hope did some impressive machining… but after seeing this factory holy cow i am impressed!, This is why my local bike shop reckons even the cheapest Tektro brakes are dead freaking reliable, said he has worked a lot on sram and shimano but the tektro brakes seem to just keep on going with the least amount of issues of any brake, freaking bullet proof stuff.

Leave comment

Your email address will not be published. Required fields are marked with *.